
NAME
sudo_plugin - Sudo Plugin API

DESCRIPTION
Starting with version 1.8, sudo supports a plugin API for policy and session logging. By default, the

sudoers policy plugin and an associated I/O logging plugin are used. Via the plugin API, sudo can be

configured to use alternate policy and/or I/O logging plugins provided by third parties. The plugins to

be used are specified via the /etc/sudo.conf file.

The API is versioned with a major and minor number. The minor version number is incremented when

additions are made. The major number is incremented when incompatible changes are made. A plugin

should be check the version passed to it and make sure that the major version matches.

The plugin API is defined by the sudo_plugin.h header file.

The sudo.conf file
The /etc/sudo.conf file contains plugin configuration directives. The primary keyword is the Plugin

directive, which causes a plugin to be loaded.

A Plugin line consists of the Plugin keyword, followed by the symbol_name and the path to the shared

object containing the plugin. The symbol_name is the name of the struct policy_plugin or struct

io_plugin in the plugin shared object. The path may be fully qualified or relative. If not fully qualified

it is relative to the /usr/local/libexec directory. Any additional parameters after the path are passed as

options to the plugin’s open() function. Lines that don’t begin with Plugin, Path, Debug or Set are

silently ignored.

The same shared object may contain multiple plugins, each with a different symbol name. The shared

object file must be owned by uid 0 and only writable by its owner. Because of ambiguities that arise

from composite policies, only a single policy plugin may be specified. This limitation does not apply to

I/O plugins.

#

Default /etc/sudo.conf file

#

Format:

Plugin plugin_name plugin_path plugin_options ...

Path askpass /path/to/askpass

Path noexec /path/to/sudo_noexec.so

Debug sudo /var/log/sudo_debug all@warn

Set disable_coredump true

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

#

The plugin_path is relative to /usr/local/libexec unless

fully qualified.

The plugin_name corresponds to a global symbol in the plugin

that contains the plugin interface structure.

The plugin_options are optional.

#

Plugin sudoers_policy sudoers.so

Plugin sudoers_io sudoers.so

Policy plugin API
A policy plugin must declare and populate a policy_plugin struct in the global scope. This structure

contains pointers to the functions that implement the sudo policy checks. The name of the symbol

should be specified in /etc/sudo.conf along with a path to the plugin so that sudo can load it.

struct policy_plugin {

#define SUDO_POLICY_PLUGIN 1

unsigned int type; /* always SUDO_POLICY_PLUGIN */

unsigned int version; /* always SUDO_API_VERSION */

int (*open)(unsigned int version, sudo_conv_t conversation,

sudo_printf_t plugin_printf, char * const settings[],

char * const user_info[], char * const user_env[],

char * const plugin_options[]);

void (*close)(int exit_status, int error);

int (*show_version)(int verbose);

int (*check_policy)(int argc, char * const argv[],

char *env_add[], char **command_info[],

char **argv_out[], char **user_env_out[]);

int (*list)(int argc, char * const argv[], int verbose,

const char *list_user);

int (*validate)(void);

void (*invalidate)(int remove);

int (*init_session)(struct passwd *pwd, char **user_env[]);

void (*register_hooks)(int version,

int (*register_hook)(struct sudo_hook *hook));

void (*deregister_hooks)(int version,

int (*deregister_hook)(struct sudo_hook *hook));

};

The policy_plugin struct has the following fields:

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

type The type field should always be set to SUDO_POLICY_PLUGIN.

version

The version field should be set to SUDO_API_VERSION.

This allows sudo to determine the API version the plugin was built against.

open

int (*open)(unsigned int version, sudo_conv_t conversation,

sudo_printf_t plugin_printf, char * const settings[],

char * const user_info[], char * const user_env[],

char * const plugin_options[]);

Returns 1 on success, 0 on failure, -1 if a general error occurred, or -2 if there was a usage error.

In the latter case, sudo will print a usage message before it exits. If an error occurs, the plugin

may optionally call the conversation() or plugin_printf() function with

SUDO_CONF_ERROR_MSG to present additional error information to the user.

The function arguments are as follows:

version

The version passed in by sudo allows the plugin to determine the major and minor version

number of the plugin API supported by sudo.

conversation

A pointer to the conversation() function that can be used by the plugin to interact with the

user (see below). Returns 0 on success and -1 on failure.

plugin_printf

A pointer to a printf()-style function that may be used to display informational or error

messages (see below). Returns the number of characters printed on success and -1 on

failure.

settings

A vector of user-supplied sudo settings in the form of ‘‘name=value’’ strings. The vector is

terminated by a NULL pointer. These settings correspond to flags the user specified when

running sudo. As such, they will only be present when the corresponding flag has been

specified on the command line.

When parsing settings, the plugin should split on the first equal sign (‘=’) since the name

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

field will never include one itself but the value might.

debug_flags=string

A comma-separated list of debug flags that correspond to sudo’s Debug entry in

/etc/sudo.conf, if there is one. The flags are passed to the plugin as they appear in

/etc/sudo.conf. The syntax used by sudo and the sudoers plugin is

subsystem@priority but the plugin is free to use a different format so long as it does

not include a comma (‘,’).

For reference, the priorities supported by the sudo front end and sudoers are: crit, err,

warn, notice, diag, info, trace and debug.

The following subsystems are defined: main, memory, args, exec, pty, utmp, conv,

pcomm, util, list, netif, audit, edit, selinux, ldap, match, parser, alias, defaults, auth,

env, logging, nss, rbtree, perms, plugin. The subsystem all includes every subsystem.

There is not currently a way to specify a set of debug flags specific to the plugin--the

flags are shared by sudo and the plugin.

debug_level=number

This setting has been deprecated in favor of debug_flags.

runas_user=string

The user name or uid to to run the command as, if specified via the -u flag.

runas_group=string

The group name or gid to to run the command as, if specified via the -g flag.

prompt=string

The prompt to use when requesting a password, if specified via the -p flag.

set_home=bool

Set to true if the user specified the -H flag. If true, set the HOME environment

variable to the target user’s home directory.

preserve_environment=bool

Set to true if the user specified the -E flag, indicating that the user wishes to preserve

the environment.

run_shell=bool

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

Set to true if the user specified the -s flag, indicating that the user wishes to run a

shell.

login_shell=bool

Set to true if the user specified the -i flag, indicating that the user wishes to run a

login shell.

implied_shell=bool

If the user does not specify a program on the command line, sudo will pass the plugin

the path to the user’s shell and set implied_shell to true. This allows sudo with no

arguments to be used similarly to su(1). If the plugin does not to support this usage, it

may return a value of -2 from the check_policy() function, which will cause sudo to

print a usage message and exit.

preserve_groups=bool

Set to true if the user specified the -P flag, indicating that the user wishes to preserve

the group vector instead of setting it based on the runas user.

ignore_ticket=bool

Set to true if the user specified the -k flag along with a command, indicating that the

user wishes to ignore any cached authentication credentials.

noninteractive=bool

Set to true if the user specified the -n flag, indicating that sudo should operate in non-

interactive mode. The plugin may reject a command run in non-interactive mode if

user interaction is required.

login_class=string

BSD login class to use when setting resource limits and nice value, if specified by the

-c flag.

selinux_role=string

SELinux role to use when executing the command, if specified by the -r flag.

selinux_type=string

SELinux type to use when executing the command, if specified by the -t flag.

bsdauth_type=string

Authentication type, if specified by the -a flag, to use on systems where BSD

authentication is supported.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

network_addrs=list

A space-separated list of IP network addresses and netmasks in the form

‘‘addr/netmask’’, e.g. ‘‘192.168.1.2/255.255.255.0’’. The address and netmask pairs

may be either IPv4 or IPv6, depending on what the operating system supports. If the

address contains a colon (‘:’), it is an IPv6 address, else it is IPv4.

progname=string

The command name that sudo was run as, typically ‘‘sudo’’ or ‘‘sudoedit’’.

sudoedit=bool

Set to true when the -e flag is is specified or if invoked as sudoedit. The plugin shall

substitute an editor into argv in the check_policy() function or return -2 with a usage

error if the plugin does not support sudoedit. For more information, see the

check_policy section.

closefrom=number

If specified, the user has requested via the -C flag that sudo close all files descriptors

with a value of number or higher. The plugin may optionally pass this, or another

value, back in the command_info list.

Additional settings may be added in the future so the plugin should silently ignore settings

that it does not recognize.

user_info

A vector of information about the user running the command in the form of ‘‘name=value’’

strings. The vector is terminated by a NULL pointer.

When parsing user_info, the plugin should split on the first equal sign (‘=’) since the name

field will never include one itself but the value might.

pid=int

The process ID of the running sudo process. Only available starting with API version

1.2

ppid=int

The parent process ID of the running sudo process. Only available starting with API

version 1.2

sid=int

The session ID of the running sudo process or 0 if sudo is not part of a POSIX job

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

control session. Only available starting with API version 1.2

pgid=int

The ID of the process group that the running sudo process belongs to. Only available

starting with API version 1.2

tcpgid=int

The ID of the forground process group associated with the terminal device

associcated with the sudo process or -1 if there is no terminal present. Only available

starting with API version 1.2

user=string

The name of the user invoking sudo.

euid=uid_t

The effective user ID of the user invoking sudo.

uid=uid_t

The real user ID of the user invoking sudo.

egid=gid_t

The effective group ID of the user invoking sudo.

gid=gid_t

The real group ID of the user invoking sudo.

groups=list

The user’s supplementary group list formatted as a string of comma-separated group

IDs.

cwd=string

The user’s current working directory.

tty=string

The path to the user’s terminal device. If the user has no terminal device associated

with the session, the value will be empty, as in ‘‘tty=’’.

host=string

The local machine’s hostname as returned by the gethostname(2) system call.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

lines=int

The number of lines the user’s terminal supports. If there is no terminal device

available, a default value of 24 is used.

cols=int

The number of columns the user’s terminal supports. If there is no terminal device

available, a default value of 80 is used.

user_env

The user’s environment in the form of a NULL-terminated vector of ‘‘name=value’’ strings.

When parsing user_env, the plugin should split on the first equal sign (‘=’) since the name

field will never include one itself but the value might.

plugin_options

Any (non-comment) strings immediately after the plugin path are treated as arguments to

the plugin. These arguments are split on a white space boundary and are passed to the

plugin in the form of a NULL-terminated array of strings. If no arguments were specified,

plugin_options will be the NULL pointer.

NOTE: the plugin_options parameter is only available starting with API version 1.2. A

plugin must check the API version specified by the sudo front end before using

plugin_options. Failure to do so may result in a crash.

close

void (*close)(int exit_status, int error);

The close() function is called when the command being run by sudo finishes.

The function arguments are as follows:

exit_status

The command’s exit status, as returned by the wait(2) system call. The value of exit_status

is undefined if error is non-zero.

error If the command could not be executed, this is set to the value of errno set by the execve(2)

system call. The plugin is responsible for displaying error information via the

conversation() or plugin_printf() function. If the command was successfully executed, the

value of error is 0.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

show_version

int (*show_version)(int verbose);

The show_version() function is called by sudo when the user specifies the -V option. The plugin

may display its version information to the user via the conversation() or plugin_printf() function

using SUDO_CONV_INFO_MSG. If the user requests detailed version information, the verbose

flag will be set.

check_policy

int (*check_policy)(int argc, char * const argv[]

char *env_add[], char **command_info[],

char **argv_out[], char **user_env_out[]);

The check_policy() function is called by sudo to determine whether the user is allowed to run the

specified commands.

If the sudoedit option was enabled in the settings array passed to the open() function, the user has

requested sudoedit mode. sudoedit is a mechanism for editing one or more files where an editor is

run with the user’s credentials instead of with elevated privileges. sudo achieves this by creating

user-writable temporary copies of the files to be edited and then overwriting the originals with the

temporary copies after editing is complete. If the plugin supports sudoedit, it should choose the

editor to be used, potentially from a variable in the user’s environment, such as EDITOR, and

include it in argv_out (note that environment variables may include command line flags). The

files to be edited should be copied from argv into argv_out, separated from the editor and its

arguments by a ‘‘--’’ element. The ‘‘--’’ will be removed by sudo before the editor is executed.

The plugin should also set sudoedit=true in the command_info list.

The check_policy() function returns 1 if the command is allowed, 0 if not allowed, -1 for a general

error, or -2 for a usage error or if sudoedit was specified but is unsupported by the plugin. In the

latter case, sudo will print a usage message before it exits. If an error occurs, the plugin may

optionally call the conversation() or plugin_printf() function with SUDO_CONF_ERROR_MSG

to present additional error information to the user.

The function arguments are as follows:

argc The number of elements in argv, not counting the final NULL pointer.

argv The argument vector describing the command the user wishes to run, in the same form as

what would be passed to the execve(2) system call. The vector is terminated by a NULL

pointer.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

env_add

Additional environment variables specified by the user on the command line in the form of

a NULL-terminated vector of ‘‘name=value’’ strings. The plugin may reject the command

if one or more variables are not allowed to be set, or it may silently ignore such variables.

When parsing env_add, the plugin should split on the first equal sign (‘=’) since the name

field will never include one itself but the value might.

command_info

Information about the command being run in the form of ‘‘name=value’’ strings. These

values are used by sudo to set the execution environment when running a command. The

plugin is responsible for creating and populating the vector, which must be terminated with

a NULL pointer. The following values are recognized by sudo:

command=string

Fully qualified path to the command to be executed.

runas_uid=uid

User ID to run the command as.

runas_euid=uid

Effective user ID to run the command as. If not specified, the value of runas_uid is

used.

runas_gid=gid

Group ID to run the command as.

runas_egid=gid

Effective group ID to run the command as. If not specified, the value of runas_gid is

used.

runas_groups=list

The supplementary group vector to use for the command in the form of a comma-

separated list of group IDs. If preserve_groups is set, this option is ignored.

login_class=string

BSD login class to use when setting resource limits and nice value (optional). This

option is only set on systems that support login classes.

preserve_groups=bool

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

If set, sudo will preserve the user’s group vector instead of initializing the group

vector based on runas_user.

cwd=string

The current working directory to change to when executing the command.

noexec=bool

If set, prevent the command from executing other programs.

chroot=string

The root directory to use when running the command.

nice=int

Nice value (priority) to use when executing the command. The nice value, if

specified, overrides the priority associated with the login_class on BSD systems.

umask=octal

The file creation mask to use when executing the command.

selinux_role=string

SELinux role to use when executing the command.

selinux_type=string

SELinux type to use when executing the command.

timeout=int

Command timeout. If non-zero then when the timeout expires the command will be

killed.

sudoedit=bool

Set to true when in sudoedit mode. The plugin may enable sudoedit mode even if

sudo was not invoked as sudoedit. This allows the plugin to perform command

substitution and transparently enable sudoedit when the user attempts to run an editor.

closefrom=number

If specified, sudo will close all files descriptors with a value of number or higher.

iolog_compress=bool

Set to true if the I/O logging plugins, if any, should compress the log data. This is a

hint to the I/O logging plugin which may choose to ignore it.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

iolog_path=string

Fully qualified path to the file or directory in which I/O log is to be stored. This is a

hint to the I/O logging plugin which may choose to ignore it. If no I/O logging plugin

is loaded, this setting has no effect.

iolog_stdin=bool

Set to true if the I/O logging plugins, if any, should log the standard input if it is not

connected to a terminal device. This is a hint to the I/O logging plugin which may

choose to ignore it.

iolog_stdout=bool

Set to true if the I/O logging plugins, if any, should log the standard output if it is not

connected to a terminal device. This is a hint to the I/O logging plugin which may

choose to ignore it.

iolog_stderr=bool

Set to true if the I/O logging plugins, if any, should log the standard error if it is not

connected to a terminal device. This is a hint to the I/O logging plugin which may

choose to ignore it.

iolog_ttyin=bool

Set to true if the I/O logging plugins, if any, should log all terminal input. This only

includes input typed by the user and not from a pipe or redirected from a file. This is

a hint to the I/O logging plugin which may choose to ignore it.

iolog_ttyout=bool

Set to true if the I/O logging plugins, if any, should log all terminal output. This only

includes output to the screen, not output to a pipe or file. This is a hint to the I/O

logging plugin which may choose to ignore it.

use_pty=bool

Allocate a pseudo-tty to run the command in, regardless of whether or not I/O logging

is in use. By default, sudo will only run the command in a pty when an I/O log plugin

is loaded.

set_utmp=bool

Create a utmp (or utmpx) entry when a pseudo-tty is allocated. By default, the new

entry will be a copy of the user’s existing utmp entry (if any), with the tty, time, type

and pid fields updated.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

utmp_user=string

User name to use when constructing a new utmp (or utmpx) entry when set_utmp is

enabled. This option can be used to set the user field in the utmp entry to the user the

command runs as rather than the invoking user. If not set, sudo will base the new

entry on the invoking user’s existing entry.

Unsupported values will be ignored.

argv_out

The NULL-terminated argument vector to pass to the execve(2) system call when executing

the command. The plugin is responsible for allocating and populating the vector.

user_env_out

The NULL-terminated environment vector to use when executing the command. The

plugin is responsible for allocating and populating the vector.

list

int (*list)(int verbose, const char *list_user,

int argc, char * const argv[]);

List available privileges for the invoking user. Returns 1 on success, 0 on failure and -1 on error.

On error, the plugin may optionally call the conversation() or plugin_printf() function with

SUDO_CONF_ERROR_MSG to present additional error information to the user.

Privileges should be output via the conversation() or plugin_printf() function using

SUDO_CONV_INFO_MSG,

verbose

Flag indicating whether to list in verbose mode or not.

list_user

The name of a different user to list privileges for if the policy allows it. If NULL, the

plugin should list the privileges of the invoking user.

argc The number of elements in argv, not counting the final NULL pointer.

argv If non-NULL, an argument vector describing a command the user wishes to check against

the policy in the same form as what would be passed to the execve(2) system call. If the

command is permitted by the policy, the fully-qualified path to the command should be

displayed along with any command line arguments.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

validate

int (*validate)(void);

The validate() function is called when sudo is run with the -v flag. For policy plugins such as

sudoers that cache authentication credentials, this function will validate and cache the credentials.

The validate() function should be NULL if the plugin does not support credential caching.

Returns 1 on success, 0 on failure and -1 on error. On error, the plugin may optionally call the

conversation() or plugin_printf() function with SUDO_CONF_ERROR_MSG to present

additional error information to the user.

invalidate

void (*invalidate)(int remove);

The invalidate() function is called when sudo is called with the -k or -K flag. For policy plugins

such as sudoers that cache authentication credentials, this function will invalidate the credentials.

If the remove flag is set, the plugin may remove the credentials instead of simply invalidating

them.

The invalidate() function should be NULL if the plugin does not support credential caching.

init_session

int (*init_session)(struct passwd *pwd, char **user_envp[);

The init_session() function is called before sudo sets up the execution environment for the

command. It is run in the parent sudo process and before any uid or gid changes. This can be

used to perform session setup that is not supported by command_info, such as opening the PAM

session. The close() function can be used to tear down the session that was opened by

init_session.

The pwd argument points to a passwd struct for the user the command will be run as if the uid the

command will run as was found in the password database, otherwise it will be NULL.

The user_env argument points to the environment the command will run in, in the form of a

NULL-terminated vector of ‘‘name=value’’ strings. This is the same string passed back to the

front end via the Policy Plugin’s user_env_out parameter. If the init_session() function needs to

modify the user environment, it should update the pointer stored in user_env. The expected use

case is to merge the contents of the PAM environment (if any) with the contents of user_env.

NOTE: the user_env parameter is only available starting with API version 1.2. A plugin must

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

check the API version specified by the sudo front end before using user_env. Failure to do so may

result in a crash.

Returns 1 on success, 0 on failure and -1 on error. On error, the plugin may optionally call the

conversation() or plugin_printf() function with SUDO_CONF_ERROR_MSG to present

additional error information to the user.

register_hooks

void (*register_hooks)(int version,

int (*register_hook)(struct sudo_hook *hook));

The register_hooks() function is called by the sudo front end to register any hooks the plugin

needs. If the plugin does not support hooks, register_hooks should be set to the NULL pointer.

The version argument describes the version of the hooks API supported by the sudo front end.

The register_hook() function should be used to register any supported hooks the plugin needs. It

returns 0 on success, 1 if the hook type is not supported and -1 if the major version in struct hook

does not match the front end’s major hook API version.

See the Hook function API section below for more information about hooks.

NOTE: the register_hooks() function is only available starting with API version 1.2. If the sudo
front end doesn’t support API version 1.2 or higher, register_hooks will not be called.

deregister_hooks

void (*deregister_hooks)(int version,

int (*deregister_hook)(struct sudo_hook *hook));

The deregister_hooks() function is called by the sudo front end to deregister any hooks the plugin

has registered. If the plugin does not support hooks, deregister_hooks should be set to the NULL

pointer.

The version argument describes the version of the hooks API supported by the sudo front end.

The deregister_hook() function should be used to deregister any hooks that were put in place by

the register_hook() function. If the plugin tries to deregister a hook that the front end does not

support, deregister_hook will return an error.

See the Hook function API section below for more information about hooks.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

NOTE: the deregister_hooks() function is only available starting with API version 1.2. If the sudo
front end doesn’t support API version 1.2 or higher, deregister_hooks will not be called.

Policy Plugin Version Macros

/* Plugin API version major/minor. */

#define SUDO_API_VERSION_MAJOR 1

#define SUDO_API_VERSION_MINOR 2

#define SUDO_API_MKVERSION(x, y) ((x << 16) | y)

#define SUDO_API_VERSION SUDO_API_MKVERSION(SUDO_API_VERSION_MAJOR,\

SUDO_API_VERSION_MINOR)

/* Getters and setters for API version */

#define SUDO_API_VERSION_GET_MAJOR(v) ((v) >> 16)

#define SUDO_API_VERSION_GET_MINOR(v) ((v) & 0xffff)

#define SUDO_API_VERSION_SET_MAJOR(vp, n) do { \

(vp) = ((vp) & 0x0000ffff) | ((n) << 16); \

} while(0)

#define SUDO_VERSION_SET_MINOR(vp, n) do { \

(vp) = ((vp) & 0xffff0000) | (n); \

} while(0)

I/O plugin API
struct io_plugin {

#define SUDO_IO_PLUGIN 2

unsigned int type; /* always SUDO_IO_PLUGIN */

unsigned int version; /* always SUDO_API_VERSION */

int (*open)(unsigned int version, sudo_conv_t conversation

sudo_printf_t plugin_printf, char * const settings[],

char * const user_info[], int argc, char * const argv[],

char * const user_env[], char * const plugin_options[]);

void (*close)(int exit_status, int error); /* wait status or error */

int (*show_version)(int verbose);

int (*log_ttyin)(const char *buf, unsigned int len);

int (*log_ttyout)(const char *buf, unsigned int len);

int (*log_stdin)(const char *buf, unsigned int len);

int (*log_stdout)(const char *buf, unsigned int len);

int (*log_stderr)(const char *buf, unsigned int len);

void (*register_hooks)(int version,

int (*register_hook)(struct sudo_hook *hook));

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

void (*deregister_hooks)(int version,

int (*deregister_hook)(struct sudo_hook *hook));

};

When an I/O plugin is loaded, sudo runs the command in a pseudo-tty. This makes it possible to log the

input and output from the user’s session. If any of the standard input, standard output or standard error

do not correspond to a tty, sudo will open a pipe to capture the I/O for logging before passing it on.

The log_ttyin function receives the raw user input from the terminal device (note that this will include

input even when echo is disabled, such as when a password is read). The log_ttyout function receives

output from the pseudo-tty that is suitable for replaying the user’s session at a later time. The

log_stdin(), log_stdout() and log_stderr() functions are only called if the standard input, standard output

or standard error respectively correspond to something other than a tty.

Any of the logging functions may be set to the NULL pointer if no logging is to be performed. If the

open function returns 0, no I/O will be sent to the plugin.

The io_plugin struct has the following fields:

type The type field should always be set to SUDO_IO_PLUGIN.

version

The version field should be set to SUDO_API_VERSION.

This allows sudo to determine the API version the plugin was built against.

open

int (*open)(unsigned int version, sudo_conv_t conversation

sudo_printf_t plugin_printf, char * const settings[],

char * const user_info[], int argc, char * const argv[],

char * const user_env[], char * const plugin_options[]);

The open() function is run before the log_input(), log_output() or show_version() functions are

called. It is only called if the version is being requested or the check_policy() function has

returned successfully. It returns 1 on success, 0 on failure, -1 if a general error occurred, or -2 if

there was a usage error. In the latter case, sudo will print a usage message before it exits. If an

error occurs, the plugin may optionally call the conversation() or plugin_printf() function with

SUDO_CONF_ERROR_MSG to present additional error information to the user.

The function arguments are as follows:

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

version

The version passed in by sudo allows the plugin to determine the major and minor version

number of the plugin API supported by sudo.

conversation

A pointer to the conversation() function that may be used by the show_version() function to

display version information (see show_version() below). The conversation() function may

also be used to display additional error message to the user. The conversation() function

returns 0 on success and -1 on failure.

plugin_printf

A pointer to a printf()-style function that may be used by the show_version() function to

display version information (see show_version below). The plugin_printf() function may

also be used to display additional error message to the user. The plugin_printf() function

returns number of characters printed on success and -1 on failure.

settings

A vector of user-supplied sudo settings in the form of ‘‘name=value’’ strings. The vector is

terminated by a NULL pointer. These settings correspond to flags the user specified when

running sudo. As such, they will only be present when the corresponding flag has been

specified on the command line.

When parsing settings, the plugin should split on the first equal sign (‘=’) since the name

field will never include one itself but the value might.

See the Policy plugin API section for a list of all possible settings.

user_info

A vector of information about the user running the command in the form of ‘‘name=value’’

strings. The vector is terminated by a NULL pointer.

When parsing user_info, the plugin should split on the first equal sign (‘=’) since the name

field will never include one itself but the value might.

See the Policy plugin API section for a list of all possible strings.

argc The number of elements in argv, not counting the final NULL pointer.

argv If non-NULL, an argument vector describing a command the user wishes to run in the same

form as what would be passed to the execve(2) system call.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

user_env

The user’s environment in the form of a NULL-terminated vector of ‘‘name=value’’ strings.

When parsing user_env, the plugin should split on the first equal sign (‘=’) since the name

field will never include one itself but the value might.

plugin_options

Any (non-comment) strings immediately after the plugin path are treated as arguments to

the plugin. These arguments are split on a white space boundary and are passed to the

plugin in the form of a NULL-terminated array of strings. If no arguments were specified,

plugin_options will be the NULL pointer.

NOTE: the plugin_options parameter is only available starting with API version 1.2. A

plugin must check the API version specified by the sudo front end before using

plugin_options. Failure to do so may result in a crash.

close

void (*close)(int exit_status, int error);

The close() function is called when the command being run by sudo finishes.

The function arguments are as follows:

exit_status

The command’s exit status, as returned by the wait(2) system call. The value of exit_status

is undefined if error is non-zero.

error If the command could not be executed, this is set to the value of errno set by the execve(2)

system call. If the command was successfully executed, the value of error is 0.

show_version

int (*show_version)(int verbose);

The show_version() function is called by sudo when the user specifies the -V option. The plugin

may display its version information to the user via the conversation() or plugin_printf() function

using SUDO_CONV_INFO_MSG. If the user requests detailed version information, the verbose

flag will be set.

log_ttyin

int (*log_ttyin)(const char *buf, unsigned int len);

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

The log_ttyin() function is called whenever data can be read from the user but before it is passed

to the running command. This allows the plugin to reject data if it chooses to (for instance if the

input contains banned content). Returns 1 if the data should be passed to the command, 0 if the

data is rejected (which will terminate the command) or -1 if an error occurred.

The function arguments are as follows:

buf The buffer containing user input.

len The length of buf in bytes.

log_ttyout

int (*log_ttyout)(const char *buf, unsigned int len);

The log_ttyout() function is called whenever data can be read from the command but before it is

written to the user’s terminal. This allows the plugin to reject data if it chooses to (for instance if

the output contains banned content). Returns 1 if the data should be passed to the user, 0 if the

data is rejected (which will terminate the command) or -1 if an error occurred.

The function arguments are as follows:

buf The buffer containing command output.

len The length of buf in bytes.

log_stdin

int (*log_stdin)(const char *buf, unsigned int len);

The log_stdin() function is only used if the standard input does not correspond to a tty device. It

is called whenever data can be read from the standard input but before it is passed to the running

command. This allows the plugin to reject data if it chooses to (for instance if the input contains

banned content). Returns 1 if the data should be passed to the command, 0 if the data is rejected

(which will terminate the command) or -1 if an error occurred.

The function arguments are as follows:

buf The buffer containing user input.

len The length of buf in bytes.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

log_stdout

int (*log_stdout)(const char *buf, unsigned int len);

The log_stdout() function is only used if the standard output does not correspond to a tty device.

It is called whenever data can be read from the command but before it is written to the standard

output. This allows the plugin to reject data if it chooses to (for instance if the output contains

banned content). Returns 1 if the data should be passed to the user, 0 if the data is rejected (which

will terminate the command) or -1 if an error occurred.

The function arguments are as follows:

buf The buffer containing command output.

len The length of buf in bytes.

log_stderr

int (*log_stderr)(const char *buf, unsigned int len);

The log_stderr() function is only used if the standard error does not correspond to a tty device. It

is called whenever data can be read from the command but before it is written to the standard

error. This allows the plugin to reject data if it chooses to (for instance if the output contains

banned content). Returns 1 if the data should be passed to the user, 0 if the data is rejected (which

will terminate the command) or -1 if an error occurred.

The function arguments are as follows:

buf The buffer containing command output.

len The length of buf in bytes.

register_hooks

See the Policy plugin API section for a description of register_hooks.

deregister_hooks

See the Policy plugin API section for a description of deregister_hooks.

I/O Plugin Version Macros

Same as for the Policy plugin API.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

Hook function API
Beginning with plugin API version 1.2, it is possible to install hooks for certain functions called by the

sudo front end.

Currently, the only supported hooks relate to the handling of environment variables. Hooks can be used

to intercept attempts to get, set, or remove environment variables so that these changes can be reflected

in the version of the environment that is used to execute a command. A future version of the API will

support hooking internal sudo front end functions as well.

Hook structure

Hooks in sudo are described by the following structure:

typedef int (*sudo_hook_fn_t)();

struct sudo_hook {

int hook_version;

int hook_type;

sudo_hook_fn_t hook_fn;

void *closure;

};

The sudo_hook structure has the following fields:

hook_version

The hook_version field should be set to SUDO_HOOK_VERSION.

hook_type

The hook_type field may be one of the following supported hook types:

SUDO_HOOK_SETENV

The C library setenv(3) function. Any registered hooks will run before the C library

implementation. The hook_fn field should be a function that matches the following

typedef:

typedef int (*sudo_hook_fn_setenv_t)(const char *name,

const char *value, int overwrite, void *closure);

If the registered hook does not match the typedef the results are unspecified.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

SUDO_HOOK_UNSETENV

The C library unsetenv(3) function. Any registered hooks will run before the C library

implementation. The hook_fn field should be a function that matches the following

typedef:

typedef int (*sudo_hook_fn_unsetenv_t)(const char *name,

void *closure);

SUDO_HOOK_GETENV

The C library getenv(3) function. Any registered hooks will run before the C library

implementation. The hook_fn field should be a function that matches the following

typedef:

typedef int (*sudo_hook_fn_getenv_t)(const char *name,

char **value, void *closure);

If the registered hook does not match the typedef the results are unspecified.

SUDO_HOOK_PUTENV

The C library putenv(3) function. Any registered hooks will run before the C library

implementation. The hook_fn field should be a function that matches the following

typedef:

typedef int (*sudo_hook_fn_putenv_t)(char *string,

void *closure);

If the registered hook does not match the typedef the results are unspecified.

hook_fn

sudo_hook_fn_t hook_fn;

The hook_fn field should be set to the plugin’s hook implementation. The actual function

arguments will vary depending on the hook_type (see hook_type above). In all cases, the closure

field of struct sudo_hook is passed as the last function parameter. This can be used to pass

arbitrary data to the plugin’s hook implementation.

The function return value may be one of the following:

SUDO_HOOK_RET_ERROR

The hook function encountered an error.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

SUDO_HOOK_RET_NEXT

The hook completed without error, go on to the next hook (including the native

implementation if applicable). For example, a getenv(3) hook might return

SUDO_HOOK_RET_NEXT if the specified variable was not found in the private copy of

the environment.

SUDO_HOOK_RET_STOP

The hook completed without error, stop processing hooks for this invocation. This can be

used to replace the native implementation. For example, a setenv hook that operates on a

private copy of the environment but leaves environ unchanged.

Note that it is very easy to create an infinite loop when hooking C library functions. For example, a

getenv(3) hook that calls the snprintf(3) function may create a loop if the snprintf(3) implementation

calls getenv(3) to check the locale. To prevent this, you may wish to use a static variable in the hook

function to guard against nested calls. For example:

static int in_progress = 0; /* avoid recursion */

if (in_progress)

return SUDO_HOOK_RET_NEXT;

in_progress = 1;

...

in_progress = 0;

return SUDO_HOOK_RET_STOP;

Hook API Version Macros

/* Hook API version major/minor */

#define SUDO_HOOK_VERSION_MAJOR 1

#define SUDO_HOOK_VERSION_MINOR 0

#define SUDO_HOOK_MKVERSION(x, y) ((x << 16) | y)

#define SUDO_HOOK_VERSION SUDO_HOOK_MKVERSION(SUDO_HOOK_VERSION_MAJOR,\

SUDO_HOOK_VERSION_MINOR)

/* Getters and setters for hook API version */

#define SUDO_HOOK_VERSION_GET_MAJOR(v) ((v) >> 16)

#define SUDO_HOOK_VERSION_GET_MINOR(v) ((v) & 0xffff)

#define SUDO_HOOK_VERSION_SET_MAJOR(vp, n) do { \

(vp) = ((vp) & 0x0000ffff) | ((n) << 16); \

} while(0)

#define SUDO_HOOK_VERSION_SET_MINOR(vp, n) do { \

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

(vp) = ((vp) & 0xffff0000) | (n); \

} while(0)

Conversation API
If the plugin needs to interact with the user, it may do so via the conversation() function. A plugin

should not attempt to read directly from the standard input or the user’s tty (neither of which are

guaranteed to exist). The caller must include a trailing newline in msg if one is to be printed.

A printf()-style function is also available that can be used to display informational or error messages to

the user, which is usually more convenient for simple messages where no use input is required.

struct sudo_conv_message {

#define SUDO_CONV_PROMPT_ECHO_OFF 0x0001 /* do not echo user input */

#define SUDO_CONV_PROMPT_ECHO_ON 0x0002 /* echo user input */

#define SUDO_CONV_ERROR_MSG 0x0003 /* error message */

#define SUDO_CONV_INFO_MSG 0x0004 /* informational message */

#define SUDO_CONV_PROMPT_MASK 0x0005 /* mask user input */

#define SUDO_CONV_DEBUG_MSG 0x0006 /* debugging message */

#define SUDO_CONV_PROMPT_ECHO_OK 0x1000 /* flag: allow echo if no tty */

int msg_type;

int timeout;

const char *msg;

};

struct sudo_conv_reply {

char *reply;

};

typedef int (*sudo_conv_t)(int num_msgs,

const struct sudo_conv_message msgs[],

struct sudo_conv_reply replies[]);

typedef int (*sudo_printf_t)(int msg_type, const char *fmt, ...);

Pointers to the conversation() and printf()-style functions are passed in to the plugin’s open() function

when the plugin is initialized.

To use the conversation() function, the plugin must pass an array of sudo_conv_message and

sudo_conv_reply structures. There must be a struct sudo_conv_message and struct sudo_conv_reply for

each message in the conversation. The plugin is responsible for freeing the reply buffer filled in to the

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

struct sudo_conv_reply, if any.

The printf()-style function uses the same underlying mechanism as the conversation() function but only

supports SUDO_CONV_INFO_MSG, SUDO_CONV_ERROR_MSG and

SUDO_CONV_DEBUG_MSG for the msg_type parameter. It can be more convenient than using the

conversation() function if no user reply is needed and supports standard printf() escape sequences.

Unlike, SUDO_CONV_INFO_MSG and Dv SUDO_CONV_ERROR_MSG , messages sent with the

SUDO_CONV_DEBUG_MSG msg_type are not directly user-visible. Instead, they are logged to the

file specified in the Debug statement (if any) in the /etc/sudo.conf

file. This allows a plugin to log debugging information and is intended to be used in conjunction with

the debug_flags setting.

See the sample plugin for an example of the conversation() function usage.

Sudoers group plugin API
The sudoers module supports a plugin interface to allow non-Unix group lookups. This can be used to

query a group source other than the standard Unix group database. A sample group plugin is bundled

with sudo that implements file-based lookups. Third party group plugins include a QAS AD plugin

available from Quest Software.

A group plugin must declare and populate a sudoers_group_plugin struct in the global scope. This

structure contains pointers to the functions that implement plugin initialization, cleanup and group

lookup.

struct sudoers_group_plugin {

unsigned int version;

int (*init)(int version, sudo_printf_t sudo_printf,

char *const argv[]);

void (*cleanup)(void);

int (*query)(const char *user, const char *group,

const struct passwd *pwd);

};

The sudoers_group_plugin struct has the following fields:

version

The version field should be set to GROUP_API_VERSION.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

This allows sudoers to determine the API version the group plugin was built against.

init

int (*init)(int version, sudo_printf_t plugin_printf,

char *const argv[]);

The init() function is called after sudoers has been parsed but before any policy checks. It returns

1 on success, 0 on failure (or if the plugin is not configured), and -1 if a error occurred. If an error

occurs, the plugin may call the plugin_printf() function with SUDO_CONF_ERROR_MSG to

present additional error information to the user.

The function arguments are as follows:

version

The version passed in by sudoers allows the plugin to determine the major and minor

version number of the group plugin API supported by sudoers.

plugin_printf

A pointer to a printf()-style function that may be used to display informational or error

message to the user. Returns the number of characters printed on success and -1 on failure.

argv A NULL-terminated array of arguments generated from the group_plugin option in sudoers.

If no arguments were given, argv will be NULL.

cleanup

void (*cleanup)();

The cleanup() function is called when sudoers has finished its group checks. The plugin should

free any memory it has allocated and close open file handles.

query

int (*query)(const char *user, const char *group,

const struct passwd *pwd);

The query() function is used to ask the group plugin whether user is a member of group.

The function arguments are as follows:

user The name of the user being looked up in the external group database.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

group

The name of the group being queried.

pwd The password database entry for user, if any. If user is not present in the password

database, pwd will be NULL.

Group API Version Macros

/* Sudoers group plugin version major/minor */

#define GROUP_API_VERSION_MAJOR 1

#define GROUP_API_VERSION_MINOR 0

#define GROUP_API_VERSION ((GROUP_API_VERSION_MAJOR << 16) | \

GROUP_API_VERSION_MINOR)

/* Getters and setters for group version */

#define GROUP_API_VERSION_GET_MAJOR(v) ((v) >> 16)

#define GROUP_API_VERSION_GET_MINOR(v) ((v) & 0xffff)

#define GROUP_API_VERSION_SET_MAJOR(vp, n) do { \

(vp) = ((vp) & 0x0000ffff) | ((n) << 16); \

} while(0)

#define GROUP_API_VERSION_SET_MINOR(vp, n) do { \

(vp) = ((vp) & 0xffff0000) | (n); \

} while(0)

PLUGIN API CHANGELOG
The following revisions have been made to the Sudo Plugin API.

Version 1.0

Initial API version.

Version 1.1

The I/O logging plugin’s open() function was modified to take the command_info list as an

argument.

Version 1.2

The Policy and I/O logging plugins’ open() functions are now passed a list of plugin options if any

are specified in /etc/sudo.conf.

A simple hooks API has been introduced to allow plugins to hook in to the system’s environment

handling functions.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

The init_session Policy plugin function is now passed a pointer to the user environment which can

be updated as needed. This can be used to merge in environment variables stored in the PAM

handle before a command is run.

SEE ALSO
sudoers(5), sudo(8)

BUGS
If you feel you have found a bug in sudo, please submit a bug report at https://www.sudo.ws/sudo/bugs/

SUPPORT
Limited free support is available via the sudo-users mailing list, see

https://www.sudo.ws/mailman/listinfo/sudo-users to subscribe or search the archives.

DISCLAIMER
sudo is provided ‘‘AS IS’’ and any express or implied warranties, including, but not limited to, the

implied warranties of merchantability and fitness for a particular purpose are disclaimed. See the

LICENSE file distributed with sudo or https://www.sudo.ws/sudo/license.html for complete details.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.8.6 July 16, 2012 Sudo 1.8.6

